Skip to content

November 11, 2020 Oh J.-H., Park W., Lim H.-G., Min Noh K., Kyung Jin E., Kug J.-S.

Published under the WorkPackage 5

In recent decades, Antarctic ice sheet/shelf melting has been accelerated, releasing freshwater into the Southern Ocean. It has been suggested that the meltwater flux could lead to cooling in the Southern Hemisphere, which would retard global warming and further induce a northward shift of the Intertropical Convergence Zone (ITCZ). In this study, we use experimental ensemble climate simulations to show that Antarctic meltwater forcing has distinct regional climate impacts over the globe, leading in particular to regional warming in East Asia, which offsets the global cooling effect by the meltwater forcing. It is suggested that Antarctic meltwater forcing leads to a negative precipitation anomaly in the Western North Pacific (WNP) via cooling in the tropics and the northward shift of the ITCZ. This suppressed convection in WNP induces an anticyclonic flow over the North Pacific, which leads to regional warming in East Asia. This hypothesis is supported by analyses of interensemble spread and long‐term control simulations.

Publication DOI: 10.1029/2020gl089951

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.